Skip to main content

How can the mobile telephone be used as 3D-modelling?


(Picture 1)


https://www.instagram.com/p/BfbSDw5FIdC/

Kimmo Huosionmaa

How can the mobile telephone be used as 3D-modelling? The answer to that question is simple. This thing uses the same device, what would focus lens of its camera. It also connects the data from the camera of that telephone. So this makes those mobile telephones very sophisticated tools for modeling. The problem of those scanners is that the mobile telephone must be absolutely stable, or the modeling would be failed.


But this can be solved by using selfie-stick, what is installed on the table or stable platform, and if the hands of the stable enough, the scanning can make by keeping the device in hand. But the fixing of this problem could be found from GPS. If this system would be sharp enough, the telephone could fix the errors, what shaking hands causes. In this solution, the GPS would map the place where the telephone is in the sharpness of only small part of the millimeter, and the computer would calculate the errors of the metering.


The system would take the original point, when scanning is beginning, and then it would fix the error what the shaking of hands might cause. This would be done by adding or subtracting the location in the real world of the phone, from the values of the pure ring. This would make the scanning more easier. This little program can revolutionize the CAM (Computer Aided Manufacturing) -technology.  Now any firm can buy this kind of equipment and use it as making 3D-models for CAD programs and 3D printers.


In this system, the computer in the mobile telephone transmits the distance between the target and telephone by using sonar. Sonar is almost as effective scanning tool as a laser, but the sound travels in the air much slower than air.


The optics of the mobile telephone would focus using Sonar and the situation where the user notices it is when this person wants to take a picture what portraits horizon. In this case, the system of the camera cannot get an echo from the surface, and the optics of camera cannot focus the image.


I have read some articles that same radars what are used in traffic light as traffic calculation sensors could be mounted to RPV-helicopters. Those helicopters can be used to make 3D-models of entire building areas. They use oblique scanning, what is connected to GPS and computing platforms to make 3D models of buildings. The computers would make 3D pictures by those pictures, what this device sends to computers.

Sources:

Picture 1


http://crisisofdemocracticstates.blogspot.fi/p/how-can-mobile-telephone-be-used-as-3d.html

Comments

Popular posts from this blog

There is a suggestion that dark matter may have deformed another universe.

The researchers suggest that dark matter is the deformed dark universe. Or in the most exciting theories, dark matter is the dark universe inside our universe. In that theory dark matter is entangled with the visible material. That theory is taken from the multiverse theory. There our visible universe is one of many universes. The other universes can be invisible because their electrons and quarks are different sizes. And that thing makes those other universes invisible to us.  Another hypothesis is that the hypothetical other universes send radiation that radiation from our universe pushes away. Things like invisible 9th. planet causes ideas that maybe there is another universe in our universe. The thing that makes the mysterious dark matter interesting is that. The dark matter can form structures that can be similar to visible material. But those structures are not visible.  The multiverse theory is not new. The thing in that theory is that there are multiple universes at this moment

The neuroscientists get a new tool, the 1400 terabyte model of human brains.

"Six layers of excitatory neurons color-coded by depth. Credit: Google Research and Lichtman Lab" (SciteechDaily, Harvard and Google Neuroscience Breakthrough: Intricately Detailed 1,400 Terabyte 3D Brain Map) Harvard and Google created the first comprehensive model of human brains. The new computer model consists of 1400 terabytes of data. That thing would be the model. That consists comprehensive dataset about axons and their connections. And that model is the path to the new models or the human brain's digital twins.  The digital twin of human brains can mean the AI-based digital model. That consists of data about the blood vessels and neural connections. However, the more advanced models can simulate electric and chemical interactions in the human brain.  This project was impossible without AI. That can collect the dataset for that model. The human brain is one of the most complicated structures and interactions between neurotransmitters, axons, and the electrochemica

Nano-acoustic systems make new types of acoustic observation systems possible.

' Acoustic diamonds are a new tool in acoustics.  Another way to make very accurate soundwaves is to take a frame of 2D materials like graphene square there is a hole. And then electrons or laser beams can make that structure resonate. Another way is to use the electromagnetic field that resonates with the frame and turns electromagnetic energy into an oscillation in the frame.  Nano-acoustic systems can be the next tool for researching the human body. The new sound-wave-based systems make it possible to see individual cells. Those soundwave-based systems or nano-sonars are tools that can have bigger accuracy. Than ever before. The nano-sonar can use nanodiamonds or nanotubes as so-called nano-LRAD systems that send coherent sound waves to the target. In nanotube-based systems, the nanotube can be in the nanodiamond.  The term acoustic diamond means a diamond whose system oscillates. The system can create oscillation sending acoustic or electromagnetic waves to the diamond. Diamond