Skip to main content

How can the mobile telephone be used as 3D-modelling?


(Picture 1)


https://www.instagram.com/p/BfbSDw5FIdC/

Kimmo Huosionmaa

How can the mobile telephone be used as 3D-modelling? The answer to that question is simple. This thing uses the same device, what would focus lens of its camera. It also connects the data from the camera of that telephone. So this makes those mobile telephones very sophisticated tools for modeling. The problem of those scanners is that the mobile telephone must be absolutely stable, or the modeling would be failed.


But this can be solved by using selfie-stick, what is installed on the table or stable platform, and if the hands of the stable enough, the scanning can make by keeping the device in hand. But the fixing of this problem could be found from GPS. If this system would be sharp enough, the telephone could fix the errors, what shaking hands causes. In this solution, the GPS would map the place where the telephone is in the sharpness of only small part of the millimeter, and the computer would calculate the errors of the metering.


The system would take the original point, when scanning is beginning, and then it would fix the error what the shaking of hands might cause. This would be done by adding or subtracting the location in the real world of the phone, from the values of the pure ring. This would make the scanning more easier. This little program can revolutionize the CAM (Computer Aided Manufacturing) -technology.  Now any firm can buy this kind of equipment and use it as making 3D-models for CAD programs and 3D printers.


In this system, the computer in the mobile telephone transmits the distance between the target and telephone by using sonar. Sonar is almost as effective scanning tool as a laser, but the sound travels in the air much slower than air.


The optics of the mobile telephone would focus using Sonar and the situation where the user notices it is when this person wants to take a picture what portraits horizon. In this case, the system of the camera cannot get an echo from the surface, and the optics of camera cannot focus the image.


I have read some articles that same radars what are used in traffic light as traffic calculation sensors could be mounted to RPV-helicopters. Those helicopters can be used to make 3D-models of entire building areas. They use oblique scanning, what is connected to GPS and computing platforms to make 3D models of buildings. The computers would make 3D pictures by those pictures, what this device sends to computers.

Sources:

Picture 1


http://crisisofdemocracticstates.blogspot.fi/p/how-can-mobile-telephone-be-used-as-3d.html

Comments

Popular posts from this blog

New AI-based operating systems revolutionize drone technology.

"University of Missouri researchers are advancing drone autonomy using AI, focusing on navigation and environmental interaction without GPS reliance. Credit: SciTechDaily.com" (ScitechDaily, AI Unleashed: Revolutionizing Autonomous Drone Navigation) The GPS is an effective navigation system. But the problem is, how to operate that system when somebody jams it? The GPS is a problematic system. Its signal is quite easy to cut. And otherwise, if the enemy gets the GPS systems in their hands, they can get GPS frequencies. That helps to make the jammer algorithms against those drones. The simple GPS is a very vulnerable thing.  Done swarms are effective tools when researchers want to control large areas. The drone swarm's power base is in a non-centralized calculation methodology. In that model, drones share their CPU power with other swarm members. This structure allows us to drive complicated AI-based solutions. And in drone swarms, the swarm operates as an entirety. That ca

Hydrogen is one of the most promising aircraft fuels.

Aircraft can use hydrogen in fuel cells. Fuel cells can give electricity to the electric engines that rotate propellers. Or they can give electricity to electric jet engines. In electric jet engines. Electric arcs heat air, and the expansion of air or some propellant pushes aircraft forward. Or, the aircraft can use hydrogen in its turbines or some more exotic engines like ramjets. Aircraft companies like Airbus and some other aircraft manufacturers test hydrogen as the turbine fuel.  Hydrogen is one of the most interesting fuels for next-generation aircraft that travel faster than ever. Hydrogen fuel is the key element in the new scramjet and ramjet-driven aircraft. Futuristic hypersonic systems can reach speeds over Mach 20.  Today the safe top speed of those aircraft that use air-breathe hypersonic aircraft is about Mach 5-6.   Hydrogen is easy to get, and the way to produce hydrogen determines how ecological that fuel can be. The electrolytic systems require electricity, and electr

The neuroscientists get a new tool, the 1400 terabyte model of human brains.

"Six layers of excitatory neurons color-coded by depth. Credit: Google Research and Lichtman Lab" (SciteechDaily, Harvard and Google Neuroscience Breakthrough: Intricately Detailed 1,400 Terabyte 3D Brain Map) Harvard and Google created the first comprehensive model of human brains. The new computer model consists of 1400 terabytes of data. That thing would be the model. That consists comprehensive dataset about axons and their connections. And that model is the path to the new models or the human brain's digital twins.  The digital twin of human brains can mean the AI-based digital model. That consists of data about the blood vessels and neural connections. However, the more advanced models can simulate electric and chemical interactions in the human brain.  This project was impossible without AI. That can collect the dataset for that model. The human brain is one of the most complicated structures and interactions between neurotransmitters, axons, and the electrochemica