Skip to main content

The good example of abiogenesis



(Picture 1)



https://youtu.be/8Sw6xRAG8XA

Kimmo Huosionmaa

How to make artificial flatworm? The methodology is same as the artificial StingRay, what is shown at the YouTube link above this text. The answer to that question is simpler than you might even guess. The core of the device can be just a piece of silicone. In the core would be set a metal wire, and around it will installed living muscle cells, what allows to move this structure. The metal structure is actually cable, and all single wire would be connected to a single muscle cell. The brains of this structure are the small microprocessor, what is connected to the head of the cable. And the electricity would get from tiny fuel cells. This means that those robots can drink alcohol for creating the electricity. Also, they can use methane in this process, and they can use to investigate moons like Titan. If those robots are used in the moons like Titan, they would need oxygen tanks for producing the electricity.


Sensors of those vehicles can be CCD-cameras, and also tiny microphones, what are used in the intelligence operations can be installed in that body. The simple form allows the mass production of that organism. The production would happen that the cutter will cut the silicon bites in the pieces like bacon. After that on this the computer and fuel cells will installed on this structure will be installed and the last process of manufacturing is that muscle cells would set on the silicone and connected to the metal structure. And then another layer of silicone would be installed on this structure. The secret of this manufacturing process is the length of this robot would be easily adjusted and the process is very fast. This would be a very good example of abiogenesis.


The factory would produce the artificial organisms for scientific purposes, but they can also use for looking the problems in the chemical plants or oil tubes. Those artificial worms can also use for intelligence missions, what means that those things can swim in the water lines, and record any voices and take pictures of the targeted plants or rooms.  They can also equip with plastic explosives, and used in sabotage missions. In those missions, they can strike against submarine telescopes, communication wires, and ventilation systems. So they can be very dangerous in the wrong hands.

Sources

https://www.npr.org/sections/health-shots/2016/07/07/484950849/synthetic-stingray-may-lead-to-a-better-artificial-heart

Picture 1



http://crisisofdemocracticstates.blogspot.fi/p/the-good-example-of-abiogenesis.html

Comments

Popular posts from this blog

New AI-based operating systems revolutionize drone technology.

"University of Missouri researchers are advancing drone autonomy using AI, focusing on navigation and environmental interaction without GPS reliance. Credit: SciTechDaily.com" (ScitechDaily, AI Unleashed: Revolutionizing Autonomous Drone Navigation) The GPS is an effective navigation system. But the problem is, how to operate that system when somebody jams it? The GPS is a problematic system. Its signal is quite easy to cut. And otherwise, if the enemy gets the GPS systems in their hands, they can get GPS frequencies. That helps to make the jammer algorithms against those drones. The simple GPS is a very vulnerable thing.  Done swarms are effective tools when researchers want to control large areas. The drone swarm's power base is in a non-centralized calculation methodology. In that model, drones share their CPU power with other swarm members. This structure allows us to drive complicated AI-based solutions. And in drone swarms, the swarm operates as an entirety. That ca

Hydrogen is one of the most promising aircraft fuels.

Aircraft can use hydrogen in fuel cells. Fuel cells can give electricity to the electric engines that rotate propellers. Or they can give electricity to electric jet engines. In electric jet engines. Electric arcs heat air, and the expansion of air or some propellant pushes aircraft forward. Or, the aircraft can use hydrogen in its turbines or some more exotic engines like ramjets. Aircraft companies like Airbus and some other aircraft manufacturers test hydrogen as the turbine fuel.  Hydrogen is one of the most interesting fuels for next-generation aircraft that travel faster than ever. Hydrogen fuel is the key element in the new scramjet and ramjet-driven aircraft. Futuristic hypersonic systems can reach speeds over Mach 20.  Today the safe top speed of those aircraft that use air-breathe hypersonic aircraft is about Mach 5-6.   Hydrogen is easy to get, and the way to produce hydrogen determines how ecological that fuel can be. The electrolytic systems require electricity, and electr

The neuroscientists get a new tool, the 1400 terabyte model of human brains.

"Six layers of excitatory neurons color-coded by depth. Credit: Google Research and Lichtman Lab" (SciteechDaily, Harvard and Google Neuroscience Breakthrough: Intricately Detailed 1,400 Terabyte 3D Brain Map) Harvard and Google created the first comprehensive model of human brains. The new computer model consists of 1400 terabytes of data. That thing would be the model. That consists comprehensive dataset about axons and their connections. And that model is the path to the new models or the human brain's digital twins.  The digital twin of human brains can mean the AI-based digital model. That consists of data about the blood vessels and neural connections. However, the more advanced models can simulate electric and chemical interactions in the human brain.  This project was impossible without AI. That can collect the dataset for that model. The human brain is one of the most complicated structures and interactions between neurotransmitters, axons, and the electrochemica