Skip to main content

The new sensor from Aalto-Yliopisto benefits the Heisenberg uncertainty principle.


"An artistic illustration shows how microscopic bolometers (depicted on the right) can be used to sense very weak radiation emitted from qubits (depicted on the left). Credit: Aleksandr Käkinen/Aalto University" (ScitechDaily, Breaking the Limits: Overcoming Heisenberg’s Uncertainty in Quantum Measurements)

"The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known." (Wikipedia, Uncertainty principle) 

In this text, the Heisenberg uncertainty principle means the same as the uncertainty principle or Heisenberg indeterminacy principle,

The highly accurate temperature sensors can measure the quantum system's energy levels. The ability to control the system requires the ability to observe its quantities. And the best quantity that we can observe is heat. The heat tells about the condition in the quantum systems. When the system follows the heat in both ends of the quantum entanglement it recognizes the point. When the quantum entanglement reaches the stable energy level. At that point, the system must transport information into some other qubit. 

Or the quantum entanglement loses its data. So the best way to make a quantum computer is to create a qubit cloud. The qubit cloud is the quantum nervous, or quantum neural system. And we can use the same diagrams for modeling those quantum neuro systems. In quantum neuro systems is always a hole, the lower energy point, that can receive information from the quantum entanglement that fills. In quantum computing. The term "filling" means that the quantum entanglement reaches the same energy level at both of its ends. 

That thing forms a standing wave that destroys the quantum entanglement. And in very futuristic ideas. Quantum entanglement could store its energy or information in that standing wave. That creates the idea that quantum computers can transfer information between different quantities. In that very theoretical model, the system can make quantum entanglement and superposition between, for example, infrared- and radio waves. 



The model of a 3D quantum neural system in that system is lower energy areas like electron holes. Those quantum holes allow. There is always space there is always free space or free qubit, there the system can transport information when quantum entanglement makes superposition. The model is created for a 3D neural system. But that thing also can be used to model the 3D quantum neural systems. 

Heisenberg uncertainty means that we cannot measure all energy forms that affect particles in the universe at the same time. So if we want to determine the particle's precise point cannot determine the particle's movement. We can determine the object's relative point to us. But we cannot measure the object's precise point about the universe. 

The thing is that space or room is one thing in bigger spaces and bigger rooms. And that means there is no certain place for particles in their entirety. But when we think about things like different quantities we cannot measure all of them, at the same time, using the same point. 

But if we share that mission with multiple sensors, we can take almost certain high-value results. The problem is that all those sensors have different distances and angles to the point, that they should measure. Those things affect measurement accuracy. And at the quantum level, even small error causes great mistakes. 

We cannot make an operating quantum computer if we think that way. In quantum computers, the computer can use a certain quantity to transport information. In the quantum world quantities like kinetic energy can turn into some other energy form like heat. The heat is one form of electromagnetic energy. It's infrared radiation. 

The heat or temperature can transform its mode to kinetic energy. And then kinetic energy can turn into another type of electromagnetic energy like electricity. The system can use heat to rotate the turbine, and the turbine rotates the generator. In the photoelectric process, light warms silicone. That heat travels to the silicone atoms. 

Then that increases those atom's energy levels. The distance between atoms expands. And that releases electrons in silicone. That is the thing that makes solar panels operate. In that process, the light transfers energy to atoms and then to electrons. 

An ability to change the form of the quantity is the thing, that makes one of the most interesting and futuristic quantum computers theoretically possible. In that system, the superposition is created between two quantities. In that case, a system can make a theoretical superposition between IR radiation and radio waves. This kind of thing can theoretically make it possible to create superposition and entanglement or simply turn two superstrings into a quantum computer. 


https://scitechdaily.com/breaking-the-limits-overcoming-heisenbergs-uncertainty-in-quantum-measurements/

https://en.wikipedia.org/wiki/Uncertainty_principle

Comments

Popular posts from this blog

There is a suggestion that dark matter may have deformed another universe.

The researchers suggest that dark matter is the deformed dark universe. Or in the most exciting theories, dark matter is the dark universe inside our universe. In that theory dark matter is entangled with the visible material. That theory is taken from the multiverse theory. There our visible universe is one of many universes. The other universes can be invisible because their electrons and quarks are different sizes. And that thing makes those other universes invisible to us.  Another hypothesis is that the hypothetical other universes send radiation that radiation from our universe pushes away. Things like invisible 9th. planet causes ideas that maybe there is another universe in our universe. The thing that makes the mysterious dark matter interesting is that. The dark matter can form structures that can be similar to visible material. But those structures are not visible.  The multiverse theory is not new. The thing in that theory is that there are multiple universes at this moment

The neuroscientists get a new tool, the 1400 terabyte model of human brains.

"Six layers of excitatory neurons color-coded by depth. Credit: Google Research and Lichtman Lab" (SciteechDaily, Harvard and Google Neuroscience Breakthrough: Intricately Detailed 1,400 Terabyte 3D Brain Map) Harvard and Google created the first comprehensive model of human brains. The new computer model consists of 1400 terabytes of data. That thing would be the model. That consists comprehensive dataset about axons and their connections. And that model is the path to the new models or the human brain's digital twins.  The digital twin of human brains can mean the AI-based digital model. That consists of data about the blood vessels and neural connections. However, the more advanced models can simulate electric and chemical interactions in the human brain.  This project was impossible without AI. That can collect the dataset for that model. The human brain is one of the most complicated structures and interactions between neurotransmitters, axons, and the electrochemica

Nano-acoustic systems make new types of acoustic observation systems possible.

' Acoustic diamonds are a new tool in acoustics.  Another way to make very accurate soundwaves is to take a frame of 2D materials like graphene square there is a hole. And then electrons or laser beams can make that structure resonate. Another way is to use the electromagnetic field that resonates with the frame and turns electromagnetic energy into an oscillation in the frame.  Nano-acoustic systems can be the next tool for researching the human body. The new sound-wave-based systems make it possible to see individual cells. Those soundwave-based systems or nano-sonars are tools that can have bigger accuracy. Than ever before. The nano-sonar can use nanodiamonds or nanotubes as so-called nano-LRAD systems that send coherent sound waves to the target. In nanotube-based systems, the nanotube can be in the nanodiamond.  The term acoustic diamond means a diamond whose system oscillates. The system can create oscillation sending acoustic or electromagnetic waves to the diamond. Diamond