Skip to main content

The quantum microscope revolutionizes science.



There are many types of quantum microscopes. And sometimes researchers mentioned that laser and electron microscopes are also quantum microscopes. Scanning tunneling microscopes are also one version of quantum microscopes. 

In those systems, the ion or some subatomic particle like electron or proton is hovering between stylus and layer. The system is sensing the changes in the position of the particle. 

And these systems are the sharpest microscopes in the world. Those microscopes are seeing single atoms. The resolution of the scanning tunneling microscope depends on the size of the particle that is used for scanning. The UV-lasers the surfaces from long distances. 

But the problem is that the wavelength of those radiation types is quite long for the cases where the observable object is smaller than the atom. Most high-resolution images can take by using gamma-ray lasers. The problem is that the gamma-ray is not reflecting from surfaces. 

The resolution of that kind of laser system depends on the wavelength that the system uses. The scanning laser microscope could use the row of single photons. Which makes it possible to scan extremely small objects. 

So if the scanning tunneling microscope uses quarks it could see the surfaces of the protons. But the most promising thing is to use the superpositioned and entangled photons for scanning the surfaces. That kind of system could scan even the quarks inside the atoms. In that system, the photon is captured in the chamber. And then that photon will put superposition what makes it possible to use that photon pair for scanning the subatomic structures. 

If the quantum microscope uses superpositioned and entangled particles for scanning the surfaces there is no limit for distance where that system can operate. The system, that uses the superpositioned and entangled particles can scan the surfaces even on another planet if there is enough energy for creating that thing. The superpositioned particle pair acts like the phonograph needle. And when another part of the particle pair is moving. Also, another pair is moving the same way. 

Quantum technology will change the world. And the ability to make the long-range high-resolution scanning is one of the most interesting things in material research. And we cannot still know all solutions that this kind of technology might have. 

In some visions, the quantum microscope is targeted at the molecule. And then the skyrmion will cut the bond of atoms at a certain point. If we are thinking about the chemical bond as the wire. The skyrmion could cut one of the wires as an example of a triple bond. Then the quantum tweezer will move the wanted atom or molecule to that point. That thing makes it possible to make a new type of chemical structure that can use in nanotechnology. 


https://cosmosmagazine.com/science/the-quantum-microscope-revolution-is-here/


https://en.wikipedia.org/wiki/Scanning_tunneling_microscope


https://en.wikipedia.org/wiki/Skyrmion


Image: https://cosmosmagazine.com/science/the-quantum-microscope-revolution-is-here/


https://thoughtsaboutsuperpositions.blogspot.com/


Comments

Popular posts from this blog

Antigravity will be the greatest thing. That we have ever created.

"Artistic depiction of a fictional anti-gravity vehicle" (Wikipedia, Anti-gravity) Sometimes, if the airships have the same lifting power as the weight of the airship.  It can act like some “antigravity system”. Those systems are based on lighter-than-air gas or hot air. The system can have a helium tank. And the hot-air section whose temperature can be adjusted using microwaves or particles that lasers warm. Those systems are faster to control than some gas flames. This makes it possible. To adjust the lifting power.  If a thing like a balloon has the same lifting power as its weight, the balloon can be lifted to a certain point and altitude. And the balloon stands at that point until something moves it. That kind of thing can make an impression. On the antigravity systems. Modern airships. Like Lockheed-Martin P-791 can look. Like a “UFO”. The system can use systems to move the craft. Or maybe those ion systems are used for plasma stealth systems, if those airships' mis...

The first test flight of X-59 QueSST

The X-59 QueSST (Quiet Supersonic Technology) demonstrator is the next generation of aircraft design. The QueSST technology means. The aircraft creates a gentler sonic boom. Because its wings are radically long and narrow delta wings, and its nose is also radically long, which makes the sonic pressure cone thinner. That technology makes the sonic boom quieter.  The QueSST technology in X-59 is a new and radical design. All of those systems are caricatures. And the final solutions might look far different than the prototypes. The QueSST technology is one of the things. That is planned to be used. It is used in military and civil applications. If that technology is successful. It can be used in manned and unmanned systems. But that requires more work.  The X-59 also uses fundamental technology. Where the pilot must not have windows. To see outside. The camera and other sensors replace traditional windows. And that can be useful in more advanced aircraft that operate at hypersoni...

The theory about paralleled universes

http://crisisofdemocracticstates.blogspot.fi/p/the-theory-about-paralleled-universes.html Kimmo Huosionmaa There is the quite unknown theory about paralleled universes. In this theory, there is not a single universe. Universes are like pearls in the pearl necklace, and there could be the connection between those universes. The connection to other universes would make possible the channel what is forming when the black hole would make the gravity tunnel to another universe. And in the paralleled universe theory, there could be millions of universes in the line, and this is also known as "Multiverse-theory". This theory was established when the galaxy-groups were noticed by astronomers. In that time were noticed that there are so-called super-groups of the galaxy, and those super-groups, where we're so much galaxy that galaxy involved stars made some cosmologists think that maybe there is also groups of universes in the emptiness. This kind of structures is so enormo...