Skip to main content

Emulating the human way to think is very difficult. But maybe someday, quantum computers will become more intelligent than humans.



When we think what is the thought about the human way to think. We must remember that making the spontaneously learning computer. It can be made by using a quantum computer. The learning process of the living organism is just connecting the action with the observation. And that thing makes spontaneously learning artificial intelligence harder to make as it should be. In real life, all that we see and feel are causing experience. 

So theoretically, the learning machine must only record everything that it sees. But the problem is how to select things that are important for the individual? If the system records everything that means the databases are growing to enormous size. And that thing makes it hard to control data masses that are stored in the system.

 Even the largest databases have limits. And in the case of artificial intelligence, the databases should be as small as possible. The system makes the network of those databases. So sometimes people are asking why there are so many neurons in our brains. The reason for that is that a large number of neurons are making sure that if one neuron is damaged that minimizes the damage. 

So if we want to simplify that thing. We can make a copy of human brains by using 300 billion databases. And then we must realize that there are no binary computers that can handle that kind of number of databases. But for the quantum computer and especially quantum annealing computers that are forming of the cloud of quantum particles. The capacity of those quantum computers that are using quantum fog as the group of qubits has no limits. 

In those hypothetical computers, the quantum particles like Bose-Einstein condensate, extremely cold fullerene, or neutrons are acting as the neurons in human brains. And the extremely precisely calculated and controlled laser rays are acting as the axons. 

By using the quantum brains there is the possibility to handle that kind of extreme entirety. In quantum brains, the quantum fog is used as the role of the neurons. The extremely cold Bose-Einstein condensate can be used in this kind of role. And the high-accurate laser rays can be used as axons. 

The vibration of the quantum fields around the condensate would play the role of a membrane of the neurons. One of the most interesting versions of quantum fog is the neutron cloud. The neutrons can anchor in stable positions and the extremely small laser rays can make the quantum brains possible. The fullerene molecules can also be used for that purpose. And if that thing is also equipped with the small superconducting mass memories that system can form the most powerful data-handling unit in the universe. 

The size of that kind of system is no limit. And some futurologists are thinking that there could be giant Dyson's spheres somewhere in the universe that can handle the quantum clouds computers that are the size of planetary systems. That kind of system might have the capacity that we cannot ever even imagine. 


https://scitechdaily.com/developing-artificial-intelligence-that-thinks-like-humans/


https://visionsofbrightfuture.blogspot.com/

Comments

Popular posts from this blog

There is a suggestion that dark matter may have deformed another universe.

The researchers suggest that dark matter is the deformed dark universe. Or in the most exciting theories, dark matter is the dark universe inside our universe. In that theory dark matter is entangled with the visible material. That theory is taken from the multiverse theory. There our visible universe is one of many universes. The other universes can be invisible because their electrons and quarks are different sizes. And that thing makes those other universes invisible to us.  Another hypothesis is that the hypothetical other universes send radiation that radiation from our universe pushes away. Things like invisible 9th. planet causes ideas that maybe there is another universe in our universe. The thing that makes the mysterious dark matter interesting is that. The dark matter can form structures that can be similar to visible material. But those structures are not visible.  The multiverse theory is not new. The thing in that theory is that there are multiple universes at this moment

The neuroscientists get a new tool, the 1400 terabyte model of human brains.

"Six layers of excitatory neurons color-coded by depth. Credit: Google Research and Lichtman Lab" (SciteechDaily, Harvard and Google Neuroscience Breakthrough: Intricately Detailed 1,400 Terabyte 3D Brain Map) Harvard and Google created the first comprehensive model of human brains. The new computer model consists of 1400 terabytes of data. That thing would be the model. That consists comprehensive dataset about axons and their connections. And that model is the path to the new models or the human brain's digital twins.  The digital twin of human brains can mean the AI-based digital model. That consists of data about the blood vessels and neural connections. However, the more advanced models can simulate electric and chemical interactions in the human brain.  This project was impossible without AI. That can collect the dataset for that model. The human brain is one of the most complicated structures and interactions between neurotransmitters, axons, and the electrochemica

Nano-acoustic systems make new types of acoustic observation systems possible.

' Acoustic diamonds are a new tool in acoustics.  Another way to make very accurate soundwaves is to take a frame of 2D materials like graphene square there is a hole. And then electrons or laser beams can make that structure resonate. Another way is to use the electromagnetic field that resonates with the frame and turns electromagnetic energy into an oscillation in the frame.  Nano-acoustic systems can be the next tool for researching the human body. The new sound-wave-based systems make it possible to see individual cells. Those soundwave-based systems or nano-sonars are tools that can have bigger accuracy. Than ever before. The nano-sonar can use nanodiamonds or nanotubes as so-called nano-LRAD systems that send coherent sound waves to the target. In nanotube-based systems, the nanotube can be in the nanodiamond.  The term acoustic diamond means a diamond whose system oscillates. The system can create oscillation sending acoustic or electromagnetic waves to the diamond. Diamond