Skip to main content

The new brain-inspired computers are the tools that make new models for the AI.



The brain-inspired computer can revolutionize the spontaneously learning AI. The idea of brain-inspired computers is that those systems act like human brains. In human brains, neurons can connect and disconnect their connections. Every neuron involves a small data structure. When neurons make connections they connect those data structures. 

They form virtual neurons that can connect those data structures in billions of ways. Every data structure involves some skill. And why neurons remove the connections. That makes it easier to control that connection structure or neural network. The brain is the morphing neural network. That morphs its structures all the time. 



Above: Von Neumann architecture is used in binary computers. The brain-inspired structure can involve even billions of networked Von Neumann architecture structures. (Wikipedia, Von Neumann architecture) 

The biggest difference between brain-inspired morphing neural networks and traditional systems is this: in traditional systems, there is only one core, the CPU that processes information. The brain-inspired computers involve multiple CPU cores. The system can begin its data-handling process in multiple places in the morphing neural networks. The system changes its structure by activating and deactivating connections between  CPUs. 


Those computers, or rather brain-inspired systems can involve four types of systems. 


1) Virtual systems

2) Artificial neuron hardware

3) Biological microchips. 

4) Quantum processor-based artificial neuron network. 


In virtual systems, the AI connects and disconnects databases. Those databases are structures that can act like neurons. They can connect each other into the new entireties. And then they can disconnect those connections. In those systems, the system morphs that structure all the time. 

The artificial neuron network means that the binary computers or binary processors are connected into a structure. That is full of databases. In those systems, the single binary computer can control a limited number of databases. But those processors can form the large-size entirety. And those morphing systems play key roles in the drone swarms. 

The biological microprocessors. Biological microchips are computer systems that communicate with living neurons. Brain-machine interfaces (BMI) are a good example of the biochips. In some other systems, the microchip communicates with cloned neurons. The neurons are in cell cultures where they get their nutrients. Those systems are tools that are hybridizing brains and machines. 

If we look at the quantum processor-based architecture from outside. The system is similar to the binary artificial neuron-based system. However, the quantum-based architecture means. That the system is more powerful and more secure. 

The quantum system's weakness is that it can maintain quantum entanglement for only a short time. When both ends reach the same energy level. That breaks the quantum entanglement. 

Which denies the data flow between those particles. Sometimes the situation where both ends in quantum entanglement reaches the same energy level is called "filling". And before quantum entanglement fills, the system must transport information to some other system. 

In quantum processor-based architecture the system can use two- or more quantum processor groups. And when the quantum entanglement is turning critical in the first quantum processor. The system transfers data to the second quantum processor group. Data jumps between those two quantum processor groups. The system is like a seesaw. 


When quantum entanglement reaches the energy stability in the first system. The system transports data to the second system, where the data travels to the quantum entanglement. And then that entanglement starts to fill. The system must transport the data to the third system. 

Those systems are not lightweight. Because the quantum processors require massive cooling systems.  But maybe someday, the probes that travel to outer solar systems can use quantum computers. In that stable and cold environment, quantum systems can operate without those coolers. 


https://www.msn.com/en-us/news/technology/from-neurons-to-network-building-computers-inspired-by-the-brain/ar-BB1mTJkz


https://en.wikipedia.org/wiki/Von_Neumann_architecture

Comments

Popular posts from this blog

New AI-based operating systems revolutionize drone technology.

"University of Missouri researchers are advancing drone autonomy using AI, focusing on navigation and environmental interaction without GPS reliance. Credit: SciTechDaily.com" (ScitechDaily, AI Unleashed: Revolutionizing Autonomous Drone Navigation) The GPS is an effective navigation system. But the problem is, how to operate that system when somebody jams it? The GPS is a problematic system. Its signal is quite easy to cut. And otherwise, if the enemy gets the GPS systems in their hands, they can get GPS frequencies. That helps to make the jammer algorithms against those drones. The simple GPS is a very vulnerable thing.  Done swarms are effective tools when researchers want to control large areas. The drone swarm's power base is in a non-centralized calculation methodology. In that model, drones share their CPU power with other swarm members. This structure allows us to drive complicated AI-based solutions. And in drone swarms, the swarm operates as an entirety. That ca

Hydrogen is one of the most promising aircraft fuels.

Aircraft can use hydrogen in fuel cells. Fuel cells can give electricity to the electric engines that rotate propellers. Or they can give electricity to electric jet engines. In electric jet engines. Electric arcs heat air, and the expansion of air or some propellant pushes aircraft forward. Or, the aircraft can use hydrogen in its turbines or some more exotic engines like ramjets. Aircraft companies like Airbus and some other aircraft manufacturers test hydrogen as the turbine fuel.  Hydrogen is one of the most interesting fuels for next-generation aircraft that travel faster than ever. Hydrogen fuel is the key element in the new scramjet and ramjet-driven aircraft. Futuristic hypersonic systems can reach speeds over Mach 20.  Today the safe top speed of those aircraft that use air-breathe hypersonic aircraft is about Mach 5-6.   Hydrogen is easy to get, and the way to produce hydrogen determines how ecological that fuel can be. The electrolytic systems require electricity, and electr

The neuroscientists get a new tool, the 1400 terabyte model of human brains.

"Six layers of excitatory neurons color-coded by depth. Credit: Google Research and Lichtman Lab" (SciteechDaily, Harvard and Google Neuroscience Breakthrough: Intricately Detailed 1,400 Terabyte 3D Brain Map) Harvard and Google created the first comprehensive model of human brains. The new computer model consists of 1400 terabytes of data. That thing would be the model. That consists comprehensive dataset about axons and their connections. And that model is the path to the new models or the human brain's digital twins.  The digital twin of human brains can mean the AI-based digital model. That consists of data about the blood vessels and neural connections. However, the more advanced models can simulate electric and chemical interactions in the human brain.  This project was impossible without AI. That can collect the dataset for that model. The human brain is one of the most complicated structures and interactions between neurotransmitters, axons, and the electrochemica