"Researchers led by UChicago Pritzker School of Molecular Engineering Professor Giulia Gall, together with collaborators in Sweden, used theoretical and computational approaches to discover how defects in simple calcium oxide can produce qubits with a handful of promising properties. Credit: UChicago Pritzker School of Molecular Engineering / Peter Allen, edited" (ScitechDaily, From Common White Powder to Quantum Innovation: Unlocking Nearly Noiseless Qubits) The femtosecond lasers are very accurate tools. They can pump energy to systems with a very high accuracy. The femtosecond laser can make new noiseless qubits. The reason why researchers are worried about the qubit's noise is the noise is the energy loss. That noise is one thing that can break the qubit's security. Following that noise, the outside system can see data that the system loads into that qubit. Quantum computers are vulnerable on the surface, which transports information and changes it to the quantum...