Skip to main content

The femtosecond lasers. And the powerful computing.


"Researchers led by UChicago Pritzker School of Molecular Engineering Professor Giulia Gall, together with collaborators in Sweden, used theoretical and computational approaches to discover how defects in simple calcium oxide can produce qubits with a handful of promising properties. Credit: UChicago Pritzker School of Molecular Engineering / Peter Allen, edited" (ScitechDaily, From Common White Powder to Quantum Innovation: Unlocking Nearly Noiseless Qubits)


The femtosecond lasers are very accurate tools. They can pump energy to systems with a very high accuracy. The femtosecond laser can make new noiseless qubits. The reason why researchers are worried about the qubit's noise is the noise is the energy loss. 

That noise is one thing that can break the qubit's security. Following that noise, the outside system can see data that the system loads into that qubit. Quantum computers are vulnerable on the surface, which transports information and changes it to the quantum model. 

In binary computer systems, there are only two numbers. One and zero. The problem is how to separate zero from system shutdown. 

Can we make the binary computer without a clock? The problem in a fast computing system is how to separate zero from the shutdown. And how to separate zeros from each other. Normally that separation is made, using the clock. The time, how long the voltage in the wire is zero determines if the system shuts down or if there is zero. 


"Researchers at Lawrence Berkeley National Laboratory have developed a method using a femtosecond laser and hydrogen doping to create and control qubits in silicon, potentially revolutionizing quantum computing by enabling precise qubit placement and connectivity for scalable quantum networks and the quantum internet. Credit: SciTechDaily.com" (ScitechDaily, Femtosecond Lasers Spearhead the Quantum Computing Revolution)


The idea is that in two-layer systems the AI-based operating system observes the data, that the lasers transmit in the photonic chips. The system requires the "stop mark" between numbers one and zero. And that stop mark can replace the clock. 

And the femtosecond laser can make that thing possible in those systems. The regular binary system runs the processor-based AI that controls the photonic system. In those systems, the longer pulse means a break. The number of femtosecond pulses determines if the number is one or zero in binary systems. 

The one might be four femtosecond pulses. The zero can be two femtosecond pulses. And the longer pulse can be the break. If researchers make a system, where only the number of pulses means, that makes the system more flexible. The system determines a minimum number of pulses that it counts to zero. Then there is the limit and pulse number above that counted to one. 

The femtosecond lasers can revolutionize computing even in binary systems. The femtosecond laser can send very highly accurate energy impulses. And that gives it the ability to adjust quantum entanglement. But the femtosecond laser can also make new photonic microchips possible. 

The system can use a binary computing system with high speed. The femtosecond laser can give two short flashes for giving zero. And four flashes for one. And there could be a longer pulse, which means a break between those signals. In this type of computer, the AI plays a key role. The AI is the system that detects the signals. 


https://scitechdaily.com/femtosecond-lasers-spearhead-the-quantum-computing-revolution/


https://scitechdaily.com/from-common-white-powder-to-quantum-innovation-unlocking-nearly-noiseless-qubits/



Comments

Popular posts from this blog

New AI-based operating systems revolutionize drone technology.

"University of Missouri researchers are advancing drone autonomy using AI, focusing on navigation and environmental interaction without GPS reliance. Credit: SciTechDaily.com" (ScitechDaily, AI Unleashed: Revolutionizing Autonomous Drone Navigation) The GPS is an effective navigation system. But the problem is, how to operate that system when somebody jams it? The GPS is a problematic system. Its signal is quite easy to cut. And otherwise, if the enemy gets the GPS systems in their hands, they can get GPS frequencies. That helps to make the jammer algorithms against those drones. The simple GPS is a very vulnerable thing.  Done swarms are effective tools when researchers want to control large areas. The drone swarm's power base is in a non-centralized calculation methodology. In that model, drones share their CPU power with other swarm members. This structure allows us to drive complicated AI-based solutions. And in drone swarms, the swarm operates as an entirety. That ca

Hydrogen is one of the most promising aircraft fuels.

Aircraft can use hydrogen in fuel cells. Fuel cells can give electricity to the electric engines that rotate propellers. Or they can give electricity to electric jet engines. In electric jet engines. Electric arcs heat air, and the expansion of air or some propellant pushes aircraft forward. Or, the aircraft can use hydrogen in its turbines or some more exotic engines like ramjets. Aircraft companies like Airbus and some other aircraft manufacturers test hydrogen as the turbine fuel.  Hydrogen is one of the most interesting fuels for next-generation aircraft that travel faster than ever. Hydrogen fuel is the key element in the new scramjet and ramjet-driven aircraft. Futuristic hypersonic systems can reach speeds over Mach 20.  Today the safe top speed of those aircraft that use air-breathe hypersonic aircraft is about Mach 5-6.   Hydrogen is easy to get, and the way to produce hydrogen determines how ecological that fuel can be. The electrolytic systems require electricity, and electr

The neuroscientists get a new tool, the 1400 terabyte model of human brains.

"Six layers of excitatory neurons color-coded by depth. Credit: Google Research and Lichtman Lab" (SciteechDaily, Harvard and Google Neuroscience Breakthrough: Intricately Detailed 1,400 Terabyte 3D Brain Map) Harvard and Google created the first comprehensive model of human brains. The new computer model consists of 1400 terabytes of data. That thing would be the model. That consists comprehensive dataset about axons and their connections. And that model is the path to the new models or the human brain's digital twins.  The digital twin of human brains can mean the AI-based digital model. That consists of data about the blood vessels and neural connections. However, the more advanced models can simulate electric and chemical interactions in the human brain.  This project was impossible without AI. That can collect the dataset for that model. The human brain is one of the most complicated structures and interactions between neurotransmitters, axons, and the electrochemica