Skip to main content

Dark matter is not necessarily a particle. It can be a quasiparticle or a soliton in the gravity field.

"Dark matter influences cosmic behavior through gravitational interactions, leading to phenomena like “dark stars,” which may explode similarly to supernovae. The exploration of potential dark matter particles, such as WIMPs and axions, is critical to understanding these celestial events. Credit: SciTechDaily.com" (ScitechDaily, Exploding “Dark Stars” – Unveiling the Explosive Secrets of Dark Matter)


In the WIMP (Weakly Interacting Massive Particle) model, the WIMP is the dark matter particle. The mystery is how those particles can be invisible. And then another mystery is: are all those particles similar, or are they some kind of quasiparticles? 

One thing that can help us to understand the dark matter's role is the energy flow. Energy flows always to a lower energy area. Galaxies are at higher energy levels than their environment. We can think that every single galaxy is on the table. And energy flows away from them. That makes it hard to see material that is between galaxies. If energy flows in a dark matter direction, we cannot see that thing without reflection. 

In some models, dark matter is a particle that spins very fast. That means radiation can travel past this object. In that model, a particle forms a standing wave that closes reflection in that quantum field which looks like the Earth's magnetic field. The other model is that this particle transforms radiation into a string that is hard to see. 

There are books written on dark matter. Cosmologists made lots of theories about this invisible and still dominant gravity effect. Some of those theories require that the Higgs field exists. The hole in Higgs field forms when some high-.energy beam with the same frequency as the Higgs field impacts the universe. 

Then that energy beam pushes the Higgs field away like water pushes air when a submarine's hull breaks. That interaction would be possible if there were other universes. The high-energy beam pushes the theoretical Higgs field away its way. Then that fallen channel moves Higgs field back to that channel. 


"Image of a galaxy showing, on the left, its stellar component, and on the right (in negative), the dark matter present in its halo. Credit: Gabriel Pérez Díaz, SMM (IAC) / The EAGLE team" (ScitechDaily, Cosmic Shadows: Astronomers Unveil Dark Matter’s Role in Galaxy Evolution) 

Even if researchers cannot see dark matter straight. They can see the gravitational shadow of that thing. 

At the beginning of the dark matter research, researchers thought that dark matter was evenly distributed. But then they found the galaxy there was no dark matter. That galaxy proved that dark matter can form similar structures as regular matter. 

The term: dark matter stars means an object that is too light being a black hole, but invisible. Those things may be hypothetical planet-mass-back holes. The key element in this model is this: if the planet's nucleus is colder than 3 kelvin radiation the outside energy pushes the planet into a black hole. And in some models, small-mass black holes are the thing called dark matter. 

The term dark matter means the gravity effect whose origin is unknown. This means that dark matter can be real particles, quasiparticles, or maybe dark matter is some kind of channel through the Higgs field. It's also possible that dark matter is a material. Whose energy level is lower than three-kelvin radiation. 

When we think about dark matter's existence, we must understand that also the quasiparticles or gravitational solitons can make the gravitational effect that origin is unknown. Or it's invisible to us. There are two types of dark matter in the original dark matter model.  But there could be many more dark matter types than those two types. 


1) Cold dark matter.

2) Hot dark matter.


That means: there could be many types of material things in the universe that can form the dark gravitational effect. In some models, the Bose-Einstein condensate or atoms with minimum energy levels can transfer similar effects on protons and neutrons. In Bose-Einstein condensate the atom's size is bigger than in the normal case. Maybe there is a model that proton's quantum field can expand. 

In this model the proton's and neutron's expanded quantum field allows photons can push quarks away from their route. In that model, dark matter exists in the intergalactic space. 

Outside the galaxies, quantum fields are very weak if we compare them with quantum fields in galaxies. They cannot push protons the same way as quantum fields can push them inside galaxies. And maybe that thing allows the photons to travel through the atom's nucleus and protons and neutrons. 

In the quasiparticle model, there is an electron hole. That is so deep that multiple electrons can start to obit it. Or maybe some missing quark makes a similar hole or pothole as an electron leaves in an electron orbiter. But there are no observations or evidence about gluon- or quark holes.  In the quasiparticle hypothesis, the dark matter is like super-exciton. The black hole is like an electron-hole. But it makes a hole in a different wavelength field than an electron. The quasiparticles can form a group that interacts like a planet. The mystery of dark matter is not solved. That means we will return to that topic quite soon. 


https://scitechdaily.com/cosmic-shadows-astronomers-unveil-dark-matters-role-in-galaxy-evolution/

https://scitechdaily.com/exploding-dark-stars-unveiling-the-explosive-secrets-of-dark-matter/

https://scitechdaily.com/resolving-the-hubble-tension-webbs-precise-measurements-illuminate-the-universes-expansion-mystery/


https://en.wikipedia.org/wiki/Axion

https://en.wikipedia.org/wiki/Dark_energy

https://en.wikipedia.org/wiki/Dark_matter

https://en.wikipedia.org/wiki/Soliton

https://en.wikipedia.org/wiki/Weakly_interacting_massive_particle





Comments

Popular posts from this blog

There is a suggestion that dark matter may have deformed another universe.

The researchers suggest that dark matter is the deformed dark universe. Or in the most exciting theories, dark matter is the dark universe inside our universe. In that theory dark matter is entangled with the visible material. That theory is taken from the multiverse theory. There our visible universe is one of many universes. The other universes can be invisible because their electrons and quarks are different sizes. And that thing makes those other universes invisible to us.  Another hypothesis is that the hypothetical other universes send radiation that radiation from our universe pushes away. Things like invisible 9th. planet causes ideas that maybe there is another universe in our universe. The thing that makes the mysterious dark matter interesting is that. The dark matter can form structures that can be similar to visible material. But those structures are not visible.  The multiverse theory is not new. The thing in that theory is that there are multiple universes at this moment

The neuroscientists get a new tool, the 1400 terabyte model of human brains.

"Six layers of excitatory neurons color-coded by depth. Credit: Google Research and Lichtman Lab" (SciteechDaily, Harvard and Google Neuroscience Breakthrough: Intricately Detailed 1,400 Terabyte 3D Brain Map) Harvard and Google created the first comprehensive model of human brains. The new computer model consists of 1400 terabytes of data. That thing would be the model. That consists comprehensive dataset about axons and their connections. And that model is the path to the new models or the human brain's digital twins.  The digital twin of human brains can mean the AI-based digital model. That consists of data about the blood vessels and neural connections. However, the more advanced models can simulate electric and chemical interactions in the human brain.  This project was impossible without AI. That can collect the dataset for that model. The human brain is one of the most complicated structures and interactions between neurotransmitters, axons, and the electrochemica

Nano-acoustic systems make new types of acoustic observation systems possible.

' Acoustic diamonds are a new tool in acoustics.  Another way to make very accurate soundwaves is to take a frame of 2D materials like graphene square there is a hole. And then electrons or laser beams can make that structure resonate. Another way is to use the electromagnetic field that resonates with the frame and turns electromagnetic energy into an oscillation in the frame.  Nano-acoustic systems can be the next tool for researching the human body. The new sound-wave-based systems make it possible to see individual cells. Those soundwave-based systems or nano-sonars are tools that can have bigger accuracy. Than ever before. The nano-sonar can use nanodiamonds or nanotubes as so-called nano-LRAD systems that send coherent sound waves to the target. In nanotube-based systems, the nanotube can be in the nanodiamond.  The term acoustic diamond means a diamond whose system oscillates. The system can create oscillation sending acoustic or electromagnetic waves to the diamond. Diamond