Skip to main content

The new quantum materials are coming.


"Researchers have devised a quantum mechanics-based approach that significantly improves the prediction and enhancement of metal ductility, leading to the development of metals that are so durable they could be considered “unbreakable” for their given application. Credit: SciTechDaily.com" (ScitechDaily, Quantum Breakthrough Paves Way for “Unbreakable” Metals)


When we think about things like neutron stars one of the reasons why it is so hard to break is this: Neutron star is a homogenous object. On its shell are only neutrons. The neutrons are spinning in one direction. The spin of the entirety is so fast that the impact energy is distributed evenly on that structure. Another thing is that individual neutrons also spin vertically relative to the equator. And that drives energy out from that structure.  

And that drives energy out from the neutron star. Normally. Neutrons can exist at 877.75 seconds if it's outside the atom nucleus. But in neutron stars. Those neutrons are in powerful gravity and electromagnetic fields. Those fields pump energy to neutrons. So theoretically is possible to make a quantum net there is neutron rolls. Those neutron rolls can drive energy out of the structure. And that makes this structure a very strong thing. 

The idea is that atoms, ions electrons, and other subatomic particles form the quantum rolls that transport energy to the wanted direction. The idea of unbreakable material is that. The material can transport energy through it or away from it immediately after energy stress. In that process, the material must not form internal standing waves. 

"Fiber-Coupled Single-Photon Source. Credit: Swati Foujdar". (ScitechDaily, Practical Quantum Devices Now Closer to Reality – Scientists Unveil Room Temperature Photonic Chips) This kind of system shoots laser beams through the holes in the material. That system can transport energy out from it. 

The thing that makes superconducting materials interesting is that there is no Hall field or resistance field in that material. That means the material can transport electromagnetic energy straight through it. Because there is no reflection of the superconductors are invisible to radars. And quantum materials can turn the superconducting effect to other wavelengths. 

In the simplest versions of the quantum materials is a lower energy layer below a higher energy layer. That makes energy travel to the lower energy layer. And if there is a laser ray or thermal pump in the middle of the structure, that thing can pump energy out of the structure. 

The thing that makes steel strong is that there is carbon. That carbon forms energy pockets in the steel. And those energy pockets make steel stronger. The fullerene carbon makes Damascus steel stronger than regular steel. 

"A quantum emitter centrally placed within a hybrid metal-dielectric bullseye antenna, designed for highly directional photon emission. The antenna’s unique structure allows photons to be efficiently coupled directly into an optical fiber, showcasing a pivotal enhancement in quantum photonics technology with implications for secure communication and advanced quantum computing applications. Credit: Alexander Nazarov" (ScitechDaily, Practical Quantum Devices Now Closer to Reality – Scientists Unveil Room Temperature Photonic Chips)




Pure iron is normally fragile. The reason for that is there are no other atoms than iron that can act as energy pockets. This makes the iron fragile because impact energy forms standing waves in that structure. And sooner or later, those standing waves destroy the structure pushing iron atoms away from each other. 

But if the iron atoms spin oppositely as groups. There could be a line in the middle of the structure where those atoms or quantum rolls face each other. In that model, the quantum rolls push energy straight through the layer. Ot if those quantum role divisions spin into the edge of the material they can transport energy to the edge of the structure and away from it. 

Quantum materials are materials that benefit the quantum states of atoms. The ability to control quantum states in materials gives new abilities for material. If researchers can control the atom's spin they can create metals that conduct impact energy straight through it. That requires that those quantum balls spin oppositely. 

If all atoms and particles have a spin in the same direction. The energy levels of those atoms are higher at the front of the structure and lower at the back of the structure. 

That thing allows energy can flow in one direction in material. And that can make material to drive quantum fields in a certain direction. This allows to transfer of energy away from it. And it can make it possible to create the unbreakable steel. 



https://scitechdaily.com/physicists-have-uncovered-a-new-spin-phase-in-quantum-materials/


https://scitechdaily.com/practical-quantum-devices-now-closer-to-reality-scientists-unveil-room-temperature-photonic-chips/


https://scitechdaily.com/quantum-breakthrough-paves-way-for-unbreakable-metals/


https://scitechdaily.com/unmasking-the-secrets-of-superconductor-phase-iii/



Comments

Popular posts from this blog

New AI-based operating systems revolutionize drone technology.

"University of Missouri researchers are advancing drone autonomy using AI, focusing on navigation and environmental interaction without GPS reliance. Credit: SciTechDaily.com" (ScitechDaily, AI Unleashed: Revolutionizing Autonomous Drone Navigation) The GPS is an effective navigation system. But the problem is, how to operate that system when somebody jams it? The GPS is a problematic system. Its signal is quite easy to cut. And otherwise, if the enemy gets the GPS systems in their hands, they can get GPS frequencies. That helps to make the jammer algorithms against those drones. The simple GPS is a very vulnerable thing.  Done swarms are effective tools when researchers want to control large areas. The drone swarm's power base is in a non-centralized calculation methodology. In that model, drones share their CPU power with other swarm members. This structure allows us to drive complicated AI-based solutions. And in drone swarms, the swarm operates as an entirety. That ca

Hydrogen is one of the most promising aircraft fuels.

Aircraft can use hydrogen in fuel cells. Fuel cells can give electricity to the electric engines that rotate propellers. Or they can give electricity to electric jet engines. In electric jet engines. Electric arcs heat air, and the expansion of air or some propellant pushes aircraft forward. Or, the aircraft can use hydrogen in its turbines or some more exotic engines like ramjets. Aircraft companies like Airbus and some other aircraft manufacturers test hydrogen as the turbine fuel.  Hydrogen is one of the most interesting fuels for next-generation aircraft that travel faster than ever. Hydrogen fuel is the key element in the new scramjet and ramjet-driven aircraft. Futuristic hypersonic systems can reach speeds over Mach 20.  Today the safe top speed of those aircraft that use air-breathe hypersonic aircraft is about Mach 5-6.   Hydrogen is easy to get, and the way to produce hydrogen determines how ecological that fuel can be. The electrolytic systems require electricity, and electr

The neuroscientists get a new tool, the 1400 terabyte model of human brains.

"Six layers of excitatory neurons color-coded by depth. Credit: Google Research and Lichtman Lab" (SciteechDaily, Harvard and Google Neuroscience Breakthrough: Intricately Detailed 1,400 Terabyte 3D Brain Map) Harvard and Google created the first comprehensive model of human brains. The new computer model consists of 1400 terabytes of data. That thing would be the model. That consists comprehensive dataset about axons and their connections. And that model is the path to the new models or the human brain's digital twins.  The digital twin of human brains can mean the AI-based digital model. That consists of data about the blood vessels and neural connections. However, the more advanced models can simulate electric and chemical interactions in the human brain.  This project was impossible without AI. That can collect the dataset for that model. The human brain is one of the most complicated structures and interactions between neurotransmitters, axons, and the electrochemica